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This paper describes a numerical study of the flow around flat plates with square 
leading and trailing edges on the basis of a finite-difference analysis of the two- 
dimensional Navier-Stokes equations. The chord-to-thickness ratio of a plate, d/h,  
ranges from 3 to 9 and the value of the Reynolds number based on the plate's 
thickness is constant and equal to lo3. The numerical computation confirms the 
finding obtained in our previous experiments that vortex shedding from flat plates 
with square leading and trailing edges is caused by the impinging-shear-layer 
instability. In particular, the Strouhal number based on the plate's chord increases 
stepwise with increasing d/h in agreement with the experiment. Numerical analyses 
also provide some crucial information on the complicated vortical flow occurring 
near the trailing edge in conjunction with the vortex shedding mechanism. Finally, 
the mechanism of the impinging-shear-layer instability is discussed in the light of 
the experimental and numerical findings. 

1. Introduction 
There have been only a few studies of vortex shedding from elongated bluff 

cylinders (e.g. Parker & Welsh 1983 ; Stokes & Welsh 1986 ; Nakamura & Nakashima 
1986 ; Okajima 1988), in spite of its considerable importance in practical applications 
associated with many problems such as flow-induced structural or acoustic 
vibrations. 

Our previous experiments (Nakamura, Ohya & Tsuruta 1991) on vortex shedding 
from flat plates with square leading and trailing edges having chord-to-thickness 
ratios d / h  = 3-16, where d is chord and h is thickness, a t  Reynolds numbers 
(1-3) x lo3, showed that vortex shedding from flat plates is characterized by the 
impinging-shear-layer instability where the separated shear layer becomes unstable 
in the presence of a sharp trailing-edge corner. The Strouhal number S, based on the 
plate's chord was approximately constant and equal to 0.6 for d/h  = 3-5. With 
further increase in d/h  up to 15, it increased stepwise to values that were 
approximately equal to integral multiples of 0.6. The number of vortices that were 
formed on the plate's side increased in correspondence with the stepwise increase in 
the Strouhal number. 

Although our experimental findings have shed new light on the nature of vortex 
shedding from flat plates, a number of flow features still remain to be understood 
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more clearly and extensively. These include the separated and reattaching flow on 
the plate’s side controlled by the impinging-shear-layer instability, vortex inter- 
actions occurring near the trailing-edge corners in conjunction with the above 
instability, and the structure of the vortical wake as a result of these interactions. 
Incidentally, the shear layers separating from the leading edges in our experiment 
were fully turbulent with transition occurring about l h  downstream of the leading 
edges. 

For a variety of two-dimensional separated and reattaching flows past elongated 
bodies such as blunt plates (Kiya & Sasaki 1983, 1985; Kiya 1987; Cherry, Hillier & 
Latour 1984) and backward-facing steps (Troutt, Scheelke & Norman 1984; Roos & 
Kegelman 1986), i t  has been widely recognized that flows a t  high Reynolds numbers 
with separation and reattachment are characterized by strong rolled-up vortices 
formed in a separated turbulent shear layer. The frequencies of these vortices, 
though not very well defined owing to the inherent turbulent fluctuations, decrease 
as they go downstream until becoming approximately constant after the mean 
reattachment point is passed. The Strouhal number based on the mean reattachment 
length for the constant frequency is around 0.7 (Cherry et al. 1984). It has been 
considered that those rolled-up vortices are generated by the Kelvin-Helmholtz 
instability. In  our experiment on flat plates with square leading and trailing edges 
(Nakamura et al. 1991), we also observed such small rolled-up vortices in the 
turbulent separated shear layers, but we have suggested (Nakamura & Nakashima 
1986; Nakamura et al. 1991) that  their final stage with an approximately constant 
Strouhal number is generated by the impinging-shear-layer instability. An important 
question arises, therefore, as to  a possible relation between these two instabilities, i.e. 
the impinging-shear-layer instability and the Kelvin-Helmholtz instability that 
precedes it. 

In  the present paper we have analysed unsteady viscous flows around flat plates 
with d / h =  3-9 a t  a Reynolds number of lo3. The two-dimensional unsteady 
Navier-Stokes equations were solved directly by a finite-difference method in a 
generalized coordinate system using a third-order upwind scheme for the convection 
terms. Numerical analysis can shed light on the details of the flow that have not been 
explored in the experiment. The computed results are analysed and compared with 
those of our previous experiment, and the mechanism of the impinging-shear-layer 
instability is discussed in the light of the experimental and numerical findings. 

2. Basic equations and numerical methods 
Let us consider a uniform flow past a flat plate with square leading and trailing 

edges a t  zero incidence, as shown in figure 1 .  The two-dimensional Navier-Stokes and 
continuity equations for unsteady incompressible viscous flow can be written in 
dimensionless form as 

au av 
ax ay -+- = 0, 
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FIGURE 1. Schematic of flow configuration, coordinate system and fluid force coefficients. 

with the following dimensionless variables : 

X* * t*U P* U* V* Uh v = a, Re = -, x = -  y = Y ,  t = -  p = -  u = -  
h '  h h '  P V '  U '  V 

where (u ,v )  are the velocity components in the x -  and y-directions, respectively, in 
a Cartesian reference frame, p the pressure, v the kinematic viscosity, U the upstream 
velocity and Re the Reynolds number. 

In  the pressure-velocity formulation, (2) and (3) are solved in conjunction with a 
Poisson equation for the pressure which is obtained by taking the divergence of (2) 
and (3). Hence, the governing equations in vector form to be solved numerically in 
this approach can be summarized as follows : 

(4) 
a u  1 
at Re 
- + ( u . V ) u  = - v p + - V U ,  

( 5 )  
1 a 

Re at 
v2p = - v . (U'V) u+-VZ(V. u )  -- (V. u ) ,  

subject to the initial and boundary conditions. 
The numerical analysis technique for solving (4) and (5) is based on the MAC 

method due to Harlow & Welch (1965). We first approximate the time derivatives of 
( 5 )  with the forward difference : 

(6) 
D" 1 
At Re 

v2pn+1 = - v . [ ( u n  . V) u"] + - + - V 2 P ,  

where D = V - u ,  At is the time increment and n denotes the integration time step 
n = t / A t .  I n  (6), Dn/At may be interpreted as a discretization of -aD/at with Dn+l = 
0. Thus the converged pressure solution resulting from (6) is such as to cause the 
discrete form of the continuity equation to  be satisfied a t  time level n+ 1. 

The Euler implicit scheme is used for the time integration of (4) : 

Here, the convection term is linearized as follows: 

( u  - V) u = ( u n + l -  V )  U*+l z ( u n  * V )  un+1. (8) 

If v is given a t  a time step n,  the Poisson equation (6) can be solved to obtain p ;  then 
by substituting these values into (7), u a t  the next time step (n+  1) is calculated. 

I n  order to simulate the flow around a body of arbitrary shape with high accuracy, 



448 Y. Ohya and others 

it is convenient to use body-fitted coordinates through coordinate transformations in 
the governing equations. The coordinate transformation is defined by 

x = x(5,r)l Y = Y(5,7), (9) 
where (x, y) denotes the original physical plane and ( 5 , ~ )  denotes the computational 
plane. 

By using (9), equations (4) and (5) are transformed as follows: 

- ( y, U, - y, UJ + 2(XE u, - x, u,) ( y, v, - y, v,) + (XE v, - x, a,)* 
J2 

Ap = - 

9 (12) 
y, U, - yt u, + XI; v, - x, V [  

J At + 
where the operator is defined by 

uA, - 2/3AEq + yA,, 
J2 

& =  

7 (13) 
(axE, - 2/3x,,, + yx,,) ( yr A,, - y, A ,) + ( ay,, - 2Py, + yy,,,,) (x, A, - xr A,) 

J3 + 
and 

J=x,y,-x,y,, a=x:+y:, ,13=xsxr+y,ys, y = x i + y f .  (14) 
The boundary conditions are given as follows: 
(i) On the body where 7 = 0, the fluid velocity is zero, i.e. u = 0 , v  = 0. The 

pressure on the body is determined by substituting u = 0 and v = 0 into (10) and 

p = -(x,Au+y,Av). 

(11): 

(15) 
1 -  

t, Re 

(ii) On the remote boundary where 7 = qmax, the flow is assumed to be uniform, i.e. 
u = 1, v = 0. The pressure is determined by extrapolation. The initial conditions are 
given as u = 0, v = 0 , p  = 0. 

All the spatial derivatives of (10)-(12) except those of the convection terms are 
approximated by central finite difference. For the convection terms, a third-order 
upwind scheme proposed by Kawamura & Kuwahara (1984) is used, i.e. 

where f is an arbitrary function, (i, j) denotes the grid point, and A[ is the grid scale. 
The leading error of this scheme is estimated to be 



Vortex shedding from flat plates 449 

FIGURE 2. Typical computational grid (a flat plate with dlh = 8, 453 x 81). 

which is only slightly dissipative. 
Thus the finite-difference equations are obtained by discretizing (lo)-( 12) written 

in a generalized coordinate system (6, 7). They are solved using the successive over- 
relaxation method. The regular mesh system is employed to  evaluate u , v , p  a t  the 
mesh points. The time increment At is ( 1  or 2 )  x 

In order to generate a grid system, an elliptic mapping method proposed by 
Thames et al. (1977) is used ; the curvilinear coordinates are generated as contours of 
the solutions of two Poisson equations : 

Adjusting Q,  it is possible to concentrate grid points near the cylinder surface. 
Figure 2 shows a typical grid used in the present calculation. For a flat plate with a 
long chord, it is necessary to set a large number of grid lines in the 6-direction to keep 
the grid resolution. The outer boundary is set at about 20h-50h upstream and 
50h-110h downstream from the centre of the plate and about 25h-5Oh away in the 
vertical direction. In the following calculations, various grid sizes are employed for 
different flat plates, as shown in table 1 .  All the numerical calculations in this work 
were carried out on a system consisting of FACOM M-780/20 and FACOM VP-200 
computers at  Kyushu University. The typical CPU time required increased with d / h  
of the flat plate ; for example, approximately 2 hours for d / h  = 3 and approximately 
24 hours for d / h  = 9. 

3. Numerical results 
When triggering vortex shedding from the flat plates, no asymmetry was added 

artificially. Initially, separation bubbles were formed symmetrically on both sides of 
a plate, while a pair of attached eddies was formed at  the rear. The separation 
bubbles increased in length with increasing time until reaching the rear edges, and 
then began to interact with the attached eddies. At  this stage, asymmetry of the flow 
appeared, which led to regular or irregular asymmetric vortex shedding. It took 
about 80 non-dimensional times for stationary vortex shedding to be established. 
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FIGURE 3. Time histories of lift coefficient C, for flat plates with (a) d /h  = 3;  ( b )  6; (c) 9. 

3.1. Flat plates with d / h  = 3, 6 and 9 
3.1.1. Time history of lift coeficient 

Figure 3(a-c) shows time histories of the lift coefficient C ,  for flat plates with 
d / h  = 3,6and9,respectively, atRe = 103.Allthefiguresshowaregularfluctuationwith 
a constant amplitude. It is clear that there is periodic vortex shedding from the flat 
plates. To calculate the Strouhal number S,, which is based on the plate's chord, the 
power spectra of C, fluctuations were obtained by an FFT analysis. As is shown in 
table 1, the computed values of S,  for flat plates with d / h  = 3 ,6  and 9 are 0.52, 1.10 
and 1.63, respectively. It should be noted that the ratio of these values is nearly 
1:2:3. Table 1 also includes the computed results for the mean and r.m.s. lift 
coefficients, the mean drag coefficient, and the Strouhal number based on the 
thickness h. 

3.1.2. Flow over the plate's side 
The flow around a long flat plate with square leading and trailing edges is 

characterized by a separated and reattaching flow phenomenon. Figures 4, 5 and 6 
show time sequences of (i) streamlines and (ii) vorticity contours covering one cycle 
of vortex shedding for a plate with d / h  = 6 (figure 5), and a half-cycle for plates with 
d / h  = 3 (figure 4) and d / h  = 9 (figure 6). As can be seen in figure 5 ( a d ) ,  the shear 
layer separating from the leading edge reattaches to the plate's side and forms a 
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FIQIJRE 4. Time sequence of flow pattern around a flat plate with d/h = 3 covering half a 
shedding cycle. ( i )  Streamlines; ( i i )  vorticity contours. (a) Minimum C,; (b) C, = 0. 

d/h 
3 
4 

5 
6 
7 
8 

9 

Grid size 

209 x 81 
261 x 81 

313 x 81 
365 x 81 
417 x 81 
453 x 81 

505 x 81 

C D  CL CLrrns 8, 8, m 
1.34 0 1.06 0.174 0.52 1 
1.44 0 1.19 0.150 0.60 1 
1.29 -0.35 1.18 0.150 0.60 1 
1.04 0 - 0.117 0.59 1 
1.26 0 1.48 0.183 1.10 2 
1.06 0 - 0.164 1.15 2 
0.97 0 - 0.137 1.10 2 
1.02 0 0.76 0.181 1.45 3 
0.90 0 1.12 0.181 1.63 3 

TA HLE 1 .  Grid sizes and computational results of characteristic parameters of flat plates at Re = 
lo3: C, = D/(0.5pph), drag coefficient; CL = L/(O.5pVh), lift coefficient; C,,,,, r.m.8. of 
fluctuating lift coefficient; D, drag force; L, lift force; p,  fluid density; S,, Strouhal number based 
on chord ; S,, Strouhal number based on height ; m, number of vortices along the side 

separation bubble. The bubble oscillates in length at  a regular frequency which is 
equal to the vortex shedding frequency. The bubble increases steadily in length until 
the bounding shear layer halfway along the bubble deflects towards the surface and 
reattaches. This splits the bubble into two with the upstream section beginning to 
grow again and the downstream section moving along the plate’s side as a discrete 
vortex. 

It is worth noting from figure 4 (a)  that during the vortex shedding just one vortex 
(a separation bubble) is formed on the plate’s side for a flat plate with d / h  = 3 .  In  
other words, the spacing of vortices on the side is just equal to the plate’s chord. 
Similarly, two vortices are formed on the side for a flat plate with d l h  = 6, and three 
vortices, for d / h  = 9. Thus, the number of vortices that are formed on the plate’s side 
for these three plates corresponds to the ratio of the values of the Strouhal number 
S,, i.e. 1:2:3 .  

3.1.3. Trailing-edge flow 
Let us now observe the flow near the trailing edge. The vortex formed on the 

plate’s side is hereafter called the L vortex for brevity. Figures 4-6 show that before 
the L vortex approaches the trailing edge, the reattached boundary layer separates 
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(i) (ii) 

FIQURE 5. Time sequence of flow pattern around a flat plate with dlh = 6 covering one shedding 
cycle. (i) Streamlines; (ii) vorticity contours. (a) Maximum C,; (b)  C, = 0;  (c) minimum C,; 
(d )  c, = 0. 

(ii) 

FIQURE 6. Time sequence of flow pattern around a flat plate with d l h  = 9 covering half a 
shedding cycle. (i) Streamlines; (ii) vorticity contours. (a)  Minimum C,; (b )  C, = 0. 

again a t  the trailing edge, thus forming a new growing vortex, which is hereafter 
called the T vortex. This T vortex interacts regularly with the oncoming L vortex, 
and they are shed in a pair in the downstream wake. (Incidentally, we do not think 
that their interaction is what is called ‘merging ’. Figures 5 (c) and 5 ( d )  suggest that 
they are still separate during downstream convection. It appears that the T vortex 
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FIGURE 7 .  Time histories of lift coefficient C, for flat plates with (a) d/h = 4; (b)  6; (c) 7 ;  (d )  8. 

is more rapidly diffused than the L vortex in this case.) The interaction between the 
two vortices occurs alternately at  the upper and lower trailing-edge corners. Thus, a 
regular vortex street develops in the downstream wake (see the flow patterns 
depicted by vorticity contours in figures 4-6), thereby producing the regular 
variations of C, shown in figure 3. 

3.2. Flat plates with d / h  = 4, 5 ,  7,  and 8 
3.2.1. Time history of lifl coeficient 

Figure 7(u-d) shows time histories of C, for flat plates with d / h  = 4, 5,  7 and 8, 
respectively, which contrast to those for d / h  = 3 , 6  and 9 (figure 3). The C, variations 
for d / h  = 5 ,  7 and 8 show markedly irregular fluctuations. However, the power 
spectra of the C, fluctuations reveal that they still have a dominant frequency. For 
example, figure 8 shows that a dominant peak can be seen in the power spectrum for 
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FIGURE 8. Power spectrum of C, fluctuation for a flat plate with d l h  = 8. 

a flat plate with d / h  = 8. The case with d / h  = 4 is different, however: as can be seen 
in figure 7 (a) ,  a regular time variation of C, appears a t  first (having zero time-mean 
value) and is replaced by another variation that still has a regular oscillation with the 
same frequency and amplitude but with a non-zero time-mean value. 

The values of t,he Strouhal number S,  for flat plates with d / h  = 4 and 5 are 0.60 
and 0.59, respectively. It is interesting that these values are nearly equal to that for 
d / h  = 3 of 0.52.  Similarly, the computed values for flat plates with d / h  = 7 and 8 are 
1.15 and 1.10, respectively, which are again nearly equal to that for d / h  = 6 of 1.10. 

3.2.2. Trailing-edge flow 

In order to investigate the cause of the random modulations in C,, we will observe 
the trailing-edge flow in detail for a flat plate with d / h  = 8. Figure 9 shows a time 
sequence of vorticity contours covering almost two shedding cycles with a positive 
time-mean value of C, (e.g. t = 400-460 or 76&820 in figure 7 d ) .  

We notice first that during the two cycles of shedding shown, L vortices on the side 
are shed periodically at the fundamental frequency. However, the interaction of L 
and T vortices at the trailing edge adds further periodic and/or irregular 
perturbations. For example, comparing the flow patterns in figure 9(a ,  d ,  h ) ,  where 
a similar phase of shedding is observed on the side, we see that the downstream flow 
developments shown in figures 9 ( a )  and 9 ( h )  are similar, while that shown in figure 
9 ( d )  is different from the other two, particularly near the trailing edge. This feature 
corresponds to the time history of C, shown in figure 7 ( d ) ,  where large-amplitude 
fluctuations repeat a t  almost every two cycles of oscillation. 

We shall now consider the interaction between L and T vortices a t  the trailing edge 
in more detail. At the lower trailing edge, the interaction is basically the same as that 
shown in figure 5, namely, L and T vort,ices are shed in a pair from the trailing edge 
(see figures 9c-9e, for example). However, the spacing between the vortex pair is 
relatively large so that the vorticity contours are much elongated. 

By contrast, the interaction at the upper trailing edge is different for two 
successive cycles of shedding. During one cycle of shedding (figures 9u-9d) L and T 
vortices are shed separately from the trailing edge. During the next cycle of shedding 
(figures 9e-9h), however, the normal interaction resumes, where L and T vortices are 
shed in a pair from the trailing edge. 
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FIGURE 9. Time sequence of vorticity contours around a flat plate with d l h  = 8 covering two 
shedding cycles. 

FIGURE 10. Vorticity contours in the wake of a flat plate with d l h  = 4 at C, = 0. 
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FIQURE 11 .  Streamlines around flat plates corresponding to minimum C,: (a) d l h  = 4 ( t  = 92.9) ; 
( b )  5 ( t  = 572.0). 

FIQURE 12. Streamlines around flat plates corresponding to C, = 0 : (a) d l h  = 7 ( t  = 104.6) ; 
( b )  8 ( t  = 439.0). 

In addition to the rather periodic perturbations mentioned above, the interaction 
can also introduce irregular fluctuations into the flow field. The source of the 
irregular fluctuations can perhaps be attributed to the phasing of shedding of the L 
and T vortices at the upper and lower trailing-edge corners. In the time history of C, 
shown in figure 7 ( d ) ,  two different phases of the lift fluctuation, where the mean 
values are positive and negative, respectively, repeat one after another at irregular 
intervals. Broadly speaking, the mirror-image of the flow patterns shown in figure 9 
should appear in the time intervals, for example, t = 540-600 or 900-960, where the 
mean C, value is negative. 

The time variation of C, shown in figure 7 (a)  for a flat plate with d / h  = 4 suggests 
that the flow has gradually shifted from a symmetric pattern to an asymmetric one, 
both having the same frequency of oscillation. The new asymmetric flow pattern is 
shown in figure 10. It is interesting that a flat plate with a symmetric shape placed 
in a uniform flow a t  zero attack angle can generate such an asymmetric flow pattern. 
This may also be caused by a slight asymmetry of interactions between L and T 
vortices at the upper and lower trailing-edge corners. In the vorticity field shown in 
figure 10, the spacing between the vortex pair shed from the upper side of a plate is 
relatively small, while for that shed from the lower side it is large. As a result, the 
vorticity shed from the upper trailing edge is more concentrated than that from the 
lower trailing edge, thus producing a negative mean lift force (figure 7 a ) .  

3.2.3. Flow along the plate’s side 
The flows along the side for flat plates with different values of d/h  but with 

approximately the same values of the Strouhal number S ,  are similar, although the 
interactions between vortices at the trailing edges can produce some variations in the 
subsequent flow development. Thus, figures i l ( a )  and l l ( b )  for flat plates with 
d / h  = 4 and 5, respectively, can be compared with figure 4(a) for a flat plate with 
d / h  = 3. All of them indicate approximately the same phase of vortex shedding. 
Similarly, figures 12 (a) and 12 ( b )  for flat plates with d / h  = 7 and 8, respectively, can 
be compared with figure 5 ( b )  for a flat plate with d / h  = 6. 
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4. Impinging-shear-layer instability 
4.1. Comparison with experiment 

As was mentioned earlier, our previous experiment on flat plates at  Re = (1-3) x lo5 
(Nakamura et al. 1991) showed that vortex shedding from flat plates is characterized 
by the impinging-shear-layer instability. The results of these experimental 
measurements of the Strouhal number at Re = lo9 are shown plotted against the 
chord-to-thickness ratio d / h  in figure 13. The Strouhal number S, increases stepwise 
to values that are approximately equal to integral multiples of 0.6. Each branch of 
nearly constant 8, is given an integer m. 

The computed values of 8, in the present numerical study are also shown in figure 
13. They again show a stepwise increase with increasing d /h  in agreement with the 
experiment. Thus, the present numerical analysis has confirmed that vortex 
shedding from flat plates can be caused by the impinging-shear-layer instability, 
where the shear layer separating from the leading-edge corner becomes unstable in 
the presence of a sharp trailing-edge corner. Flat plates with d/h  = 3-5 are grouped 
into the first branch of vortex shedding m = 1 ; similarly, flat plates with d / h  = 6-8 
are grouped into the second branch m = 2 ,  and a flat plate with d/h  = 9 in the third 
branch m = 3. There is close similarity in the flow for each branch, which is 
characterized by the number m of vortices formed on the plate’s side. Among flat 
plates belonging to each branch the one with smallest d / h  is the most basic in the 
manner of vortex shedding. The numerical analysis has shown that this is because 
only this plate has very regular vortex shedding, while irregularities in vortex 
shedding emerge to increase with increasing d / h .  In parallel with the experiment, the 
values of S, for the basic plates lie on a straight line passing through the origin. 

S, often had two values at  the stepwise jump for the same d / h  in our previous 
experiments. In the numerical analysis, we also obtained two values of S,  for a flat 
plate with d / h  = 8, the low and high values corresponding to the branches of m = 
2 and m = 3, respectively (figure 13). This will be discussed again in 55. 

4.2. Mechanism of the impinging-shear-layer instability 
A number of important conclusions on the nature of the impinging-shear-layer 
instability can be drawn from a careful comparison between the experiments and the 
numerical analysis. We should first mention essential differences in the flow 
conditions between the two. Our flow visualization (Nakamura et al. 1991) revealed 
that the flow around a flat plate at Re = lo8 is turbulent with inherent random 
fluctuations, namely transition from laminar to turbulent flow occurred in the shear 
layer immediately after separation, i.e. about l h  downstream of the leading edge. 
The flow after Separation was initially two-dimensional but three-dimensional 
random modulations developed when the curvature of the turbulent shear layer was 
reversed. On the other hand, the flow in the present numerical analysis is purely two- 
dimensional and laminar everywhere including the separated shear layers. Our 
numerical analysis has shown that the impinging-shew layer instability can be 
generated in a purely two-dimensional laminar flow. The good agreement between 
the experiment and the numerical analysis in the 8, variation with d/h,  therefore, 
suggests that the impinging-shear-layer instability is not essentially influenced by 
any transition processes and/or turbulence. 

Our flow visualization on flat plates a t  Re = lo9 also showed that the impinging- 
shear-layer instability was preceded by the Kelvin-Helmholtz instability. In the 
present numerical analysis, however, we have found no trace of a Kelvin-Helmholtz 
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d lh  
FIQURE 13. Strouhal number S, based on the chord vs. chord-to-thickness ratio dlh at 

Re = los: 0 -, experimental (Nakamura et al. 1991); x -.-, numerical. 

instability preceding the impinging-shear-layer instability. This is to be expected 
since the Kelvin-Helmholtz instability is a kind of free-shear-layer instability, while 
the presence of the trailing-edge corner is essential to the impinging-shear-layer 
instability. I n  short, the Kelvin-Helmholtz instability is not necessary to  trigger the 
impinging-shear-layer instability. 

5. Further numerical experiments on a flat plate with d / h  = 8 
During an early phase of the present investigation. we tried to obtain the response 

of the flow to some artificial disturbance to  check the possibility of controlling the 
random modulation in the flow arising from the vortex interactions a t  the trailing 
edge such as described in $3.2.2. This was successful, but we found later that such 
random modulations can take place spontaneously without introducing any artificial 
disturbance into the flow. 

In one such trial on a flat plate with d l h  = 8, we found the transition in vortex 
shedding from m = 2 to m = 3 that  was found in our previous experiment (figure 13). 
The plate was initially at zero incidence and was then given a small positive incidence 
of 0.5' for only a short time interval t = 616-694, and the subsequent flow 
development was observed. 

Figure 14 (a) shows the time history of the lift fluctuation, where it can be seen that 
for t > 1280, the plate is experiencing very regular vortex shedding with a zero-mean 
C, value. Figures 14(6) and 14(c) show the streaklines and the time sequence of 
vorticity contours, respectively, corresponding to this regular vortex shedding. It is 
clear from these figures that the vortex shedding belongs to the branch of m = 3. It 
is interesting to note that the value of S,  is just on the basic line plotted in figure 13. 
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FIGURE 14. Vortex shedding of branch m = 3 for a flat plate with dlh  = 8. (a) Time history of lift 
coefficient C,; ( b )  streaklines in the wake ( t  = 1397.6); (c) time sequence of vorticity contours 
covering one shedding cycle. 

6. Conclusions 
Flows around flat plates with square leading and trailing edges were analysed 

numerically by direct integration of the Navier-Stokes equations using the finite- 
difference method. The chord-to-thickness ratio of a plate, d / h ,  ranged from 3 to 9 
and the value of the Reynolds number based on the plate's thickness was constant 
and equal to lo3. The main results of this study can be summarized as follows. 

I n  agreement with our previous experiment, the numerical analysis has shown that 
vortex shedding from flat plates with square leading and trailing edges is 
characterized by the impinging-shear-layer instability, where the separated shear 
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layer can be unstable in the presence of a sharp trailing-edge corner. The Strouhal 
number 8, baaed on the plate’s chord, shows a stepwise increase with increasing d/h .  
The number of vortices formed on the plate’s side increases in correspondence with 
the stepwise increase in the Strouhal number. Among flat plates with nearly constant 
Strouhal numbers the one with smallest d / h  is the most basic. This is because only 
this one has very regular vortex shedding, while irregularities in vortex shedding 
emerge to increase with increasing d/h. In agreement with the experiment, the 
numerical analysis also showed two S, values of different branches for a flat plate 
with a transitional d / h  = 8.  

There are complicated interactions between the vortex being shed from upstream 
and that being generated a t  the trailing edge which control the downstream vortical 
flow. The source of the irregularities in the flow may be attributed to these 
interactions. 

The impinging-shear-layer instability is not essentially influenced by any 
transition processes and/or turbulence. Also, the Kelvin-Helmholtz instability that 
often preceded it is not essential to trigger the impinging-shear-layer instability. 
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